Propositional Resolution

Second Part: Algorithms

Benjamin Wack
Paolo Torrini

Université Grenoble Alpes

January 2021
Proof by resolution of our running example

- (H1): $p \Rightarrow \neg j \equiv \neg p \lor \neg j$
- (H2): $\neg p \Rightarrow j \equiv p \lor j$
- (H3): $j \Rightarrow m \equiv \neg j \lor m$
- (C): $m \lor p$

To prove: $H1, H2, H3 \vdash C$
Proof by resolution of our running example

- (H1) : \(p \Rightarrow \neg j \equiv \neg p \lor \neg j \)
- (H2) : \(\neg p \Rightarrow j \equiv p \lor j \)
- (H3) : \(j \Rightarrow m \equiv \neg j \lor m \)
- (C) : \(m \lor p \)

To prove: \(H1, H2, H3 \vdash C \)

- \(\neg C \equiv \neg m \land \neg p \)

Clauses: \(\{ \neg p \lor \neg j, p \lor j, \neg j \lor m, \neg m, \neg p \} \)
Proof by resolution of our running example

\[\begin{align*}
\text{(H1)} &: p \Rightarrow \neg j \equiv \neg p \lor \neg j \\
\text{(H2)} &: \neg p \Rightarrow j \equiv p \lor j \\
\text{(H3)} &: j \Rightarrow m \equiv \neg j \lor m \\
\text{(C)} &: m \lor p
\end{align*}\]

To prove: $H1, H2, H3 \vdash C$

\[\neg C \equiv \neg m \land \neg p\]

Clauses: $\{\neg p \lor \neg j, p \lor j, \neg j \lor m, \neg m, \neg p\}$

\[\begin{align*}
p \lor j & \quad \neg j \lor m \\
\hline
p \lor m & \quad \neg m \\
\hline
p \lor m & \quad \neg m \\
\hline
p & \quad \neg p \\
\hline
\bot & \quad \bot
\end{align*}\]
Proof by resolution of our running example

- (H1): $p \Rightarrow \neg j \equiv \neg p \lor \neg j$
- (H2): $\neg p \Rightarrow j \equiv p \lor j$
- (H3): $j \Rightarrow m \equiv \neg j \lor m$
- (C): $m \lor p$

To prove: $H1, H2, H3 \vdash C$

- $\neg C \equiv \neg m \land \neg p$

Clauses: \{\neg p \lor \neg j, p \lor j, \neg j \lor m, \neg m, \neg p\}

\[
\begin{align*}
\frac{p \lor j \hspace{1cm} \neg j \lor m}{p \lor m} \quad \frac{p \lor j \hspace{1cm} \neg p}{\neg m} & \quad \frac{p \lor j \hspace{1cm} \neg p}{\neg m} \\
\hline
\frac{\neg m}{p} \quad \frac{\neg m}{p} & \quad \frac{\neg m}{p} \\
\hline
\frac{\bot}{\bot} & \quad \frac{\bot}{\bot}
\end{align*}
\]

OR
Previous lectures

- Language: Propositional Logic
- Semantics: Truth Tables, Boolean Algebras
- Systems of Deduction: Resolution
Previous lectures

- Language: Propositional Logic
- Semantics: Truth Tables, Boolean Algebras
- Systems of Deduction: Resolution

1. $\Gamma \vdash B$

 B is *deduced* from Γ: there is a formal proof (by resolution) of B starting from Γ.

2. $\Gamma \models B$

 B is a *consequence* of Γ: every model of Γ is also a model of B.

Today: Correctness

(1) \Rightarrow (2)

Today: Completeness

(2) \Rightarrow (1)
Previous lectures

- Language: Propositional Logic
- Semantics: Truth Tables, Boolean Algebras
- Systems of Deduction: Resolution

(1) $\Gamma \vdash B$

B is *deduced* from Γ: there is a formal proof (by resolution) of B starting from Γ.

(2) $\Gamma \models B$

B is a *consequence* of Γ: every model of Γ is also a model of B.
Previous lectures

- Language: Propositional Logic
- Semantics: Truth Tables, Boolean Algebras
- Systems of Deduction: Resolution

(1) $\Gamma \vdash B$

B is deduced from Γ: there is a formal proof (by resolution) of B starting from Γ.

(2) $\Gamma \models B$

B is a consequence of Γ: every model of Γ is also a model of B.

Today: Correctness

(1) \Rightarrow (2)
Previous lectures

- Language: Propositional Logic
- Semantics: Truth Tables, Boolean Algebras
- Systems of Deduction: Resolution

(1) $\Gamma \vdash B$

B is *deduced* from Γ: there is a formal proof (by resolution) of B starting from Γ.

(2) $\Gamma \models B$

B is a *consequence* of Γ: every model of Γ is also a model of B.

Today: Correctness

(1) \Rightarrow (2)

Today: Completeness

(2) \Rightarrow (1)
Overview

Correctness of deduction

Completeness of deduction

Introduction to Resolution Algorithms

A Deductive Method: Complete Strategy

A SAT Method: the Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Conclusion
Overview

Correctness of deduction

Completeness of deduction

Introduction to Resolution Algorithms

A Deductive Method: Complete Strategy

A SAT Method: the Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Conclusion
Definition

The **correctness** of a deductive system states that all the statements which can be proved in the systems are true (in the sense of our truth-value semantics).

If it is 'proved', then it is 'true'.
Correctness of the resolution rule

Theorem 2.1.15

If C is a resolvent of A and B then $A, B \models C$.

Proof.
Correctness of the resolution rule

Theorem 2.1.15

If C is a resolvent of A and B then $A, B \models C$.

Proof.

If C is a resolvent of A and B, then there is a literal L such that $L \in A, L^c \in B$, and $C = (A - \{L\}) \cup (B - \{L^c\})$.
Correctness of the resolution rule

Theorem 2.1.15
If C is a resolvent of A and B then $A, B \models C$.

Proof.
If C is a resolvent of A and B, then there is a literal L such that $L \in A, L^c \in B$, and $C = (A - \{L\}) \cup (B - \{L^c\})$.
Let ν be an assignment such that $[A]_\nu = 1$ and $[B]_\nu = 1$: let us show that $[C]_\nu = 1$.

\square
Correctness of the resolution rule

Theorem 2.1.15

If \(C \) is a resolvent of \(A \) and \(B \) then \(A, B \models C \).

Proof.

If \(C \) is a resolvent of \(A \) and \(B \), then there is a literal \(L \) such that \(L \in A, L^c \in B \), and \(C = (A - \{L\}) \cup (B - \{L^c\}) \).

Let \(v \) be an assignment such that \([A]_v = 1 \) and \([B]_v = 1 \): let us show that \([C]_v = 1 \).

- Suppose that \([L]_v = 1 \).
- Suppose that \([L^c]_v = 1 \).
Correctness of the resolution rule

Theorem 2.1.15
If \(C\) is a resolvent of \(A\) and \(B\) then \(A, B \models C\).

Proof.
If \(C\) is a resolvent of \(A\) and \(B\), then there is a literal \(L\) such that \(L \in A, L^c \in B\), and \(C = (A - \{L\}) \cup (B - \{L^c\})\).
Let \(\nu\) be an assignment such that \([A]_{\nu} = 1\) and \([B]_{\nu} = 1\): let us show that \([C]_{\nu} = 1\).

- Suppose that \([L]_{\nu} = 1\). Therefore \([L^c]_{\nu} = 0\).
 Since \([B]_{\nu} = 1\), \(\nu\) is a model of a literal of \((B - \{L^c\})\). Hence \([C]_{\nu} = 1\).
- Suppose that \([L^c]_{\nu} = 1\).
Correctness of the resolution rule

Theorem 2.1.15

If C is a resolvent of A and B then $A, B \models C$.

Proof.

If C is a resolvent of A and B, then there is a literal L such that $L \in A, L^c \in B$, and $C = (A - \{L\}) \cup (B - \{L^c\})$.

Let ν be an assignment such that $[A]_{\nu} = 1$ and $[B]_{\nu} = 1$: let us show that $[C]_{\nu} = 1$.

- Suppose that $[L]_{\nu} = 1$. Therefore $[L^c]_{\nu} = 0$.
 Since $[B]_{\nu} = 1$, ν is a model of a literal of $(B - \{L^c\})$. Hence $[C]_{\nu} = 1$.

- Suppose that $[L^c]_{\nu} = 1$. Therefore $[L]_{\nu} = 0$.
 Since $[A]_{\nu} = 1$, ν is a model of $(A - \{L\})$. Hence $[C]_{\nu} = 1$.

□
Correctness of the resolution rule

Theorem 2.1.15
If C is a resolvent of A and B then $A, B \models C$.

Proof.
If C is a resolvent of A and B, then there is a literal L such that $L \in A, L^c \in B$, and $C = (A - \{L\}) \cup (B - \{L^c\})$.

Let ν be an assignment such that $[A]_{\nu} = 1$ and $[B]_{\nu} = 1$: let us show that $[C]_{\nu} = 1$.

- Suppose that $[L]_{\nu} = 1$. Therefore $[L^c]_{\nu} = 0$.
 Since $[B]_{\nu} = 1$, ν is a model of a literal of $(B - \{L^c\})$. Hence $[C]_{\nu} = 1$.

- Suppose that $[L^c]_{\nu} = 1$. Therefore $[L]_{\nu} = 0$.
 Since $[A]_{\nu} = 1$, ν is a model of $(A - \{L\})$. Hence $[C]_{\nu} = 1$.

Since every truth assignment is either model of L or L^c, ν is a model of C. □
Correctness of deduction

Theorem 2.1.16 (by induction on the length of the derivation)

Let \(\Gamma \) be a set of clauses and \(C \) a clause. If \(\Gamma \vdash C \) then \(\Gamma \models C \).

Proof.

Suppose that there is a proof \(P \) of \(C \) starting from \(\Gamma \).
Suppose that for any proof of \(\Gamma \vdash D \) shorter than \(P \), we have \(\Gamma \models D \).
Let us show that \(\Gamma \models C \). There are two possible cases:

1. \(C \) is a member of \(\Gamma \), in this case \(\Gamma \models C \).
2. \(\Gamma \vdash A \), \(\Gamma \vdash B \) (with a shorter proof) and \(A \lor B \vdash C \).
 By induction hypothesis: \(\Gamma \models A \) and \(\Gamma \models B \).
 By correctness of the resolution rule: \(A \lor B \models C \). Hence \(\Gamma \models C \).
Correctness of deduction

Theorem 2.1.16 (by induction on the length of the derivation)

Let Γ be a set of clauses and C a clause. If $\Gamma \vdash C$ then $\Gamma \models C$.

Proof.

Suppose that there is a proof P of C starting from Γ.
Suppose that for any proof of $\Gamma \vdash D$ shorter than P, we have $\Gamma \models D$.
Let us show that $\Gamma \models C$. There are two possible cases:

1. C is a member of Γ, in this case $\Gamma \models C$.
Correctness of deduction

Theorem 2.1.16 (by induction on the length of the derivation)

Let Γ be a set of clauses and C a clause. If $\Gamma \vdash C$ then $\Gamma \models C$.

Proof.

Suppose that there is a proof P of C starting from Γ.
Suppose that for any proof of $\Gamma \vdash D$ shorter than P, we have $\Gamma \models D$.
Let us show that $\Gamma \models C$. There are two possible cases:

1. C is a member of Γ, in this case $\Gamma \models C$.
2. $\Gamma \vdash A$, $\Gamma \vdash B$ (with a shorter proof) and

\[
\frac{A \quad B}{C}
\]

By induction hypothesis: $\Gamma \models A$ and $\Gamma \models B$.
By correctness of the resolution rule: $A, B \models C$. Hence $\Gamma \models C$.
Overview

Correctness of deduction

Completeness of deduction

Introduction to Resolution Algorithms

A Deductive Method: Complete Strategy

A SAT Method: the Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Conclusion
Definition

Completeness for refutation is the property:

If $\Gamma \models \bot$ then $\Gamma \vdash \bot$

We will prove this result for a finite Γ, by induction on the number of variables in Γ.
Definition 2.1.18

Let Γ be a set of clauses and L a literal.

$\Gamma[L := 1]$ is obtained by:
- deleting the clauses containing L
- removing L^c from the other clauses.

$\Gamma[L := 0]$ is similarly defined by switching the roles of L and L^c.

Remark: the number of variables in Γ has been decreased.
Examples

Example 2.1.19

Let \(\Gamma \) be the set of clauses \(\overline{p} + q, \overline{q} + r, p + q, p + r \). We have:

\[
\Gamma[p := 1] = \{ q, q + r \}
\]

\[
\Gamma[p := 0] = \{ q + r, q, r \}
\]

Notice that:

\[
(1 + q)(q + r)(1 + q)(1 + r) \equiv q(q + r) = \Gamma[p := 1]
\]

\[
(0 + q)(q + r)(0 + q)(0 + r) \equiv q + r = \Gamma[p := 0]
\]
Examples

Example 2.1.19

Let Γ be the set of clauses $\overline{p} + q$, $\overline{q} + r$, $p + q$, $p + r$. We have:

- $\Gamma[p := 1] =$
 $$\{q, \overline{q} + r\}.$$

- $\Gamma[p := 0] =$
Examples

Example 2.1.19

Let Γ be the set of clauses $\overline{p} + q$, $\overline{q} + r$, $p + q$, $p + r$. We have:

- $\Gamma[p := 1] = \{q, \overline{q} + r\}$.
- $\Gamma[p := 0] = \{\overline{q} + r, q, r\}$.

Examples

Example 2.1.19

Let Γ be the set of clauses $\overline{p} + q$, $\overline{q} + r$, $p + q$, $p + r$. We have:

- $\Gamma[p := 1] = \{q, \overline{q} + r\}$.
- $\Gamma[p := 0] = \{\overline{q} + r, q, r\}$.

Notice that:

- $(\overline{1} + q)(\overline{q} + r)(1 + q)(1 + r) \equiv q(\overline{q} + r) = \Gamma[p := 1]$.
- $(\overline{0} + q)(\overline{q} + r)(0 + q)(0 + r) \equiv (\overline{q} + r)qr = \Gamma[p := 0]$.

B. Wack et al (UGA)
Property of $\Gamma[L := ...]$

Property 2.1.21

Γ has a model if and only if $\Gamma[L := 1]$ or $\Gamma[L := 0]$ has a model.

Proof.
Property of $\Gamma[L := \ldots]$

Property 2.1.21

Γ has a model if and only if $\Gamma[L := 1]$ or $\Gamma[L := 0]$ has a model.

Proof.

\Rightarrow If ν is a model of Γ then ν is a model of either $\Gamma[L := 0]$ (if $[L]_{\nu'} = 0$) or $\Gamma[L := 1]$ (if $[L]_{\nu'} = 1$).
Property of $\Gamma[L := \ldots]$

Property 2.1.21

Γ has a model if and only if $\Gamma[L := 1]$ or $\Gamma[L := 0]$ has a model.

Proof.

⇒ If ν is a model of Γ then ν is a model of either $\Gamma[L := 0]$ (if $[L]_{\nu'} = 0$) or $\Gamma[L := 1]$ (if $[L]_{\nu'} = 1$).

⇐ If ν is a model of $\Gamma[L := i]$ then we can build a model of Γ (by taking $[L]_{\nu'} = i$).
Lemma 2.1.22

Let Γ a set of clauses, C a clause and L a literal.
If $\Gamma[L := 1] \vdash C$ then $\Gamma \vdash C$ or $\Gamma \vdash C + L^c$.

Proof.

Idea: we put back L^c in the clauses where it was removed.

- If $C \in \Gamma[L := 1]$:

- If C is a resolvent of A and B:
Lemma 2.1.22

Let Γ a set of clauses, C a clause and L a literal.
If $\Gamma[L := 1] \vdash C$ then $\Gamma \vdash C$ or $\Gamma \vdash C + L^c$.

Proof.

Idea: we put back L^c in the clauses where it was removed.

- If $C \in \Gamma[L := 1]$:
 - either C was in Γ, thus $\Gamma \vdash C$
 - or C was obtained by removing a L^c, thus $\Gamma \vdash C + L^c$

- If C is a resolvent of A and B:
Lemma 2.1.22

Let Γ a set of clauses, C a clause and L a literal. If $\Gamma[L := 1] \vdash C$ then $\Gamma \vdash C$ or $\Gamma \vdash C + L^c$.

Proof.

Idea: we put back L^c in the clauses where it was removed.

- If $C \in \Gamma[L := 1]$:
 - either C was in Γ, thus $\Gamma \vdash C$
 - or C was obtained by removing a L^c, thus $\Gamma \vdash C + L^c$

- If C is a resolvent of A and B:
 - either $\Gamma \vdash A$ and $\Gamma \vdash B$, hence $\Gamma \vdash C$
 - or L^c has to be put back into A or B, thus into C too

\square
Completeness of propositional resolution

Theorem 2.1.24

Let Γ be a finite set of clauses. If Γ is unsatisfiable then $\Gamma \vdash \bot$.

Proof

By induction on the number of variables in Γ.

- **Base case:** Γ has no variable, so $\Gamma = \emptyset$ (impossible, it's valid) or $\Gamma = \{\bot\}$.

- **Inductive step:** as we know, \bot follows from Γ iff it either does from $\Gamma[L := 1]$ or $\Gamma[L := 0]$. Now apply the induction hyp.

 Then we know that either $\Gamma \vdash \bot$, or $\Gamma \vdash x$ and $\Gamma \vdash \overline{x}$.

Corollary 2.1.25

Γ is unsatisfiable if and only if $\Gamma \vdash \bot$.
Overview

Correctness of deduction

Completeness of deduction

Introduction to Resolution Algorithms

A Deductive Method: Complete Strategy

A SAT Method: the Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Conclusion
Presentation of the two algorithms

How to “systematically” decide whether Γ is inconsistent or not?
Presentation of the two algorithms

How to “systematically” decide whether Γ is inconsistent or not?

- **Complete strategy**

 Purely deductive method: we try to prove $\Gamma \vdash \bot$.

 Approach: “intelligent” construction of ALL the deductible clauses (resolvents) from Γ
Presentation of the two algorithms

How to “systematically” decide whether Γ is inconsistent or not?

- **Complete strategy**
 Purely deductive method: we try to prove $\Gamma \vdash \bot$.
 Approach: “intelligent” construction of ALL the deductible clauses (resolvents) from Γ

- **The Davis-Putnam-Logemann-Loveland Algorithm**
 Semantic method: we try to build a model for Γ.
 Approach: “intelligent” traversal of the possible assignments of Γ
Presentation of the two algorithms

How to “systematically” decide whether Γ is inconsistent or not?

- **Complete strategy**
 - Purely deductive method: we try to prove $\Gamma \vdash \bot$.
 - Approach: “intelligent” construction of ALL the deductible clauses (resolvents) from Γ

- **The Davis-Putnam-Logemann-Loveland Algorithm**
 - Semantic method: we try to build a model for Γ.
 - Approach: “intelligent” traversal of the possible assignments of Γ

Remark

Exponential solutions in time in the worst case.
Overview

Correctness of deduction

Completeness of deduction

Introduction to Resolution Algorithms

A Deductive Method: Complete Strategy

A SAT Method: the Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Conclusion
Exponential complexity

Remember that two clauses having the same set of literals are equal.

If Γ uses n, then we have at most 2^n distinct clauses deduced from Γ.
Reduction of a set of clauses

In order to accelerate the algorithm, we reduce the set of clauses.
Reduction of a set of clauses

In order to accelerate the algorithm, we reduce the set of clauses.

How to proceed with reduction?

Remove the valid clauses and the clauses containing another clause of the set.
Reduction of a set of clauses

In order to accelerate the algorithm, we \textit{reduce} the set of clauses.

How to proceed with reduction?

Remove the \textit{valid} clauses and the clauses \textit{containing another} clause of the set.

Example 2.1.27

The reduction of the set of clauses \{\(p + q + \bar{p}, p + r, p + r + \bar{s}, r + q\}\} gives the reduced set:
Reduction of a set of clauses

In order to accelerate the algorithm, we reduce the set of clauses.

How to proceed with reduction?

Remove the valid clauses and the clauses containing another clause of the set.

Example 2.1.27

The reduction of the set of clauses \(\{p + q + \overline{p}, p + r, p + r + \overline{s}, r + q\} \) gives the reduced set:

\[\{p + q + \overline{p}, p + r, p + r + \overline{s}, r + q\}. \]
Justification

Property 2.1.28

A set of clauses E is equivalent to the reduced set of clauses obtained from E.
Justification

Property 2.1.28

A set of clauses E is equivalent to the reduced set of clauses obtained from E.

Proof.

- Removing valid clauses: $x.1 \equiv x$
Justification

Property 2.1.28

A set of clauses E is equivalent to the reduced set of clauses obtained from E.

Proof.

- Removing valid clauses: $x.1 \equiv x$
- Removing a clause including another clause: $x(x + y) \equiv x$
Propositional Resolution
A Deductive Method: Complete Strategy

Principle of the algorithm: Build all the clauses deduced from Γ

Following the height of the proof trees.

Algorithm

For any integer i
While it is possible to construct new clauses
Build the reduced set of all the clauses having a proof tree of height at most i.
Principle of the algorithm: Build all the clauses deduced from Γ

Following the height of the proof trees.

Algorithm

For any integer i
While it is possible to construct new clauses
Build the reduced set of all the clauses having a proof tree of height at most i.

In practice:
Maintain two sequences of the sets of clauses, $\Delta_{i(\geq 0)}$ and $\Theta_{i(\geq 0)}$
Result of the algorithm: minimum deduction clauses

Definition 2.1.29

A minimum clause for the deduction from Γ is:

- a non-valid clause
- deduced from Γ
- and containing no other clause deduced from Γ.

Example 2.1.30

$\Gamma = \{a + b, b + c + d\}$

The clause $a + c + d$ is a minimum clause for deduction.

But if we add $a + c$ to Γ, then $a + c + d$ is not minimal anymore (since we can now deduce $c + d$).
Result of the algorithm: minimum deduction clauses

Definition 2.1.29

A minimum clause for the deduction from Γ is:

- a non-valid clause
- deduced from Γ
- and containing no other clause deduced from Γ.

Example 2.1.30

$\Gamma = \{ a + \overline{b}, b + c + d \}$

- The clause $a + c + d$ is a minimum clause for deduction.
Result of the algorithm: minimum deduction clauses

Definition 2.1.29

A minimum clause for the deduction from Γ is:

- a non-valid clause
- deduced from Γ
- and containing no other clause deduced from Γ.

Example 2.1.30

$\Gamma = \{a + b, b + c + d\}$

- The clause $a + c + d$ is a minimum clause for deduction.
- But if we add $\bar{a} + c$ to Γ, then $a + c + d$ is not minimal anymore (since we can now deduce $c + d$).
Property

Property 2.1.31

Let Θ be the set of minimum deduction clauses for the set Γ. Γ is unsatisfiable if and only if $\bot \in \Theta$.
Property

Property 2.1.31

Let Θ be the set of minimum deduction clauses for the set Γ. Γ is unsatisfiable if and only if $\bot \in \Theta$.

Proof.

\Rightarrow Suppose $\bot \in \Theta$, then $\Gamma \vdash \bot$, hence by resolution correctness, Γ is unsatisfiable.
Property

Property 2.1.31

Let Θ be the set of minimum deduction clauses for the set Γ. Γ is unsatisfiable if and only if $\bot \in \Theta$.

Proof.

- Suppose $\bot \in \Theta$, then $\Gamma \vdash \bot$, hence by resolution correctness, Γ is unsatisfiable.

- Suppose Γ is unsatisfiable, by resolution completeness, $\Gamma \vdash \bot$. Consequently \bot is a minimum clause for deduction from Γ, therefore $\bot \in \Theta$.\[\]
Two sequences of sets of clauses

\(\Delta_i \) are the new useful clauses

- Clauses deduced from \(\Gamma \) by a proof of height \(i \), after removal of:
 - valid clauses
 - clauses including another clause whose proof has height \(< i \).

\(\Delta_0 \) is obtained by reducing \(\Gamma \).
Two sequences of sets of clauses

\(\Delta_i \) are the new useful clauses

Clauses deduced from \(\Gamma \) by a proof of height \(i \), after removal of:

- valid clauses
- clauses including another clause whose proof has height \(< i \).

\(\Delta_0 \) is obtained by reducing \(\Gamma \).

\(\Theta_i \) are the old clauses still useful

Clauses deduced from \(\Gamma \) by a proof of height \(< i \) after removal of:

- valid clauses
- clauses including another clause whose proof has height \(\leq i \).

\(\Theta_0 \) is the empty set.
Construction of the sequences $\Delta_{i(i \geq 0)}$ and $\Theta_{i(i \geq 0)}$

Δ_{i+1}

- Compute all the resolvents of Δ_i and $\Delta_i \cup \Theta_i$
- Reduce this set
- Remove the new resolvents including a clause from $\Delta_i \cup \Theta_i$

When $\Delta_k = \emptyset$, stop the construction.

$k - 1$ is then the maximum height of a proof.

Θ_k is the reduced set of the clauses deduced from Γ.

B. Wack et al (UGA)
Construction of the sequences $\Delta_i(i \geq 0)$ and $\Theta_i(i \geq 0)$

\[\Delta_{i+1} \]
- Compute all the resolvents of Δ_i and $\Delta_i \cup \Theta_i$
- Reduce this set
- Remove the new resolvents including a clause from $\Delta_i \cup \Theta_i$

\[\Theta_{i+1} \]
Remove from $\Delta_i \cup \Theta_i$ the clauses which include a clause from Δ_{i+1}.
Propositional Resolution
A Deductive Method: Complete Strategy

Construction of the sequences $\Delta_i(i \geq 0)$ and $\Theta_i(i \geq 0)$

Δ_{i+1}

- Compute all the resolvents of Δ_i and $\Delta_i \cup \Theta_i$
- Reduce this set
- Remove the new resolvents including a clause from $\Delta_i \cup \Theta_i$

Θ_{i+1}

Remove from $\Delta_i \cup \Theta_i$ the clauses which include a clause from Δ_{i+1}.

When $\Delta_k = \emptyset$, stop the construction:

- $k - 1$ is then the maximum height of a proof
- Θ_k is the reduced set of the clauses deduced from Γ
Exemple 2.2.1

Soit \(\Gamma = \{ a + b + \overline{a}, a + b, a + b + c, a + \overline{b}, \overline{a} + b, \overline{a} + \overline{b} \} \)

Rappel :

- \(\Delta_{i+1} = \)
 - Compute all the resolvents of \(\Delta_i \) and \(\Delta_i \cup \Theta_i \)
 - Reduce this set
 - Remove the new resolvents which include a clause from \(\Delta_i \cup \Theta_i \)
- \(\Theta_{i+1} = \)
 Remove from \(\Delta_i \cup \Theta_i \) the clauses which include a clause of \(\Delta_{i+1} \).
Exemple 2.2.1

Soit $\Gamma = \{a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b}\}$

<table>
<thead>
<tr>
<th>i</th>
<th>Δ_i</th>
<th>Θ_i</th>
<th>$\Delta_i \cup \Theta_i$</th>
<th>Résolvants de Δ_i et $\Delta_i \cup \Theta_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rappel :

- $\Delta_{i+1} =$
 - Compute all the resolvents of Δ_i and $\Delta_i \cup \Theta_i$
 - Reduce this set
 - Remove the new resolvents which include a clause from $\Delta_i \cup \Theta_i$

- $\Theta_{i+1} =$
 Remove from $\Delta_i \cup \Theta_i$ the clauses which include a clause of Δ_{i+1}.
Exemple 2.2.1

Soit $\Gamma = \{a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b}\}$

<table>
<thead>
<tr>
<th>i</th>
<th>Δ_i</th>
<th>Θ_i</th>
<th>$\Delta_i \cup \Theta_i$</th>
<th>Résolvants de Δ_i et $\Delta_i \cup \Theta_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rappel :

$\Delta_{i+1} =$

$\Theta_{i+1} =$

Remove from $\Delta_i \cup \Theta_i$ the clauses which include a clause of Δ_{i+1}.
Exemple 2.2.1

Soit $\Gamma = \{a + b + \overline{a}, a + b, a + b + c, a + \overline{b}, \overline{a} + b, \overline{a} + \overline{b}\}$

<table>
<thead>
<tr>
<th></th>
<th>Δ_i</th>
<th>Θ_i</th>
<th>$\Delta_i \cup \Theta_i$</th>
<th>Résolvants de Δ_i et $\Delta_i \cup \Theta_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$a + b + \overline{a}, a + b, \overline{a} + b, \overline{a} + \overline{b}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rappel :

- $\Delta_{i+1} =$
 - Compute all the resolvents of Δ_i and $\Delta_i \cup \Theta_i$
 - Reduce this set
 - Remove the new resolvents which include a clause from $\Delta_i \cup \Theta_i$

- $\Theta_{i+1} =$
 - Remove from $\Delta_i \cup \Theta_i$ the clauses which include a clause of Δ_{i+1}.
Exemple 2.2.1

Soit $\Gamma = \{a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b}\}$

<table>
<thead>
<tr>
<th>i</th>
<th>Δ_i</th>
<th>Θ_i</th>
<th>$\Delta_i \cup \Theta_i$</th>
<th>Résolvants de Δ_i et $\Delta_i \cup \Theta_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b}$</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rappel :

- $\Delta_{i+1} =$
 - Compute all the resolvents of Δ_i and $\Delta_i \cup \Theta_i$
 - Reduce this set
 - Remove the new resolvents which include a clause from $\Delta_i \cup \Theta_i$
- $\Theta_{i+1} =$
 - Remove from $\Delta_i \cup \Theta_i$ the clauses which include a clause of Δ_{i+1}.

Propositional Resolution

B. Wack et al (UGA)
Exemple 2.2.1

Soit \(\Gamma = \{a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b}\} \)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(\Delta_i)</th>
<th>(\Theta_i)</th>
<th>(\Delta_i \cup \Theta_i)</th>
<th>Résolvants de (\Delta_i) et (\Delta_i \cup \Theta_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b})</td>
<td>0</td>
<td>(a + b, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b})</td>
<td></td>
</tr>
</tbody>
</table>

Rappel :

- \(\Delta_{i+1} = \)
 - Compute all the resolvents of \(\Delta_i\) and \(\Delta_i \cup \Theta_i\)
 - Reduce this set
 - Remove the new resolvents which include a clause from \(\Delta_i \cup \Theta_i\)

- \(\Theta_{i+1} = \)
 - Remove from \(\Delta_i \cup \Theta_i\) the clauses which include a clause of \(\Delta_{i+1}\).
Exemple 2.2.1

Soit $\Gamma = \{a+b+\bar{a}, a+b, a+b+c, a+\bar{b}, \bar{a}+b, \bar{a}+\bar{b}\}$

<table>
<thead>
<tr>
<th>i</th>
<th>Δ_i</th>
<th>Θ_i</th>
<th>$\Delta_i \cup \Theta_i$</th>
<th>Résolvants de Δ_i et $\Delta_i \cup \Theta_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$a+b+\bar{a}, a+b, a+b+c, a+\bar{b}, \bar{a}+b, \bar{a}+\bar{b}$</td>
<td>0</td>
<td>$a+b, a+\bar{b}, \bar{a}+b, \bar{a}+\bar{b}$</td>
<td>$a, b, b+\bar{b}, a+\bar{a}, \bar{b}, \bar{a}$</td>
</tr>
</tbody>
</table>

Rappel :

- $\Delta_{i+1} =$
 - Compute all the resolvents of Δ_i and $\Delta_i \cup \Theta_i$
 - Reduce this set
 - Remove the new resolvents which include a clause from $\Delta_i \cup \Theta_i$

- $\Theta_{i+1} =$
 Remove from $\Delta_i \cup \Theta_i$ the clauses which include a clause of Δ_{i+1}.
Exemple 2.2.1

Soit $\Gamma = \{a+b+\bar{a}, a+b, a+b+c, a+\bar{b}, \bar{a}+b, \bar{a}+\bar{b}\}$

<table>
<thead>
<tr>
<th>i</th>
<th>Δ_i</th>
<th>Θ_i</th>
<th>$\Delta_i \cup \Theta_i$</th>
<th>Résolvants de Δ_i et $\Delta_i \cup \Theta_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$a+b+\bar{a}, a+b$</td>
<td>0</td>
<td>$a+b, a+\bar{b}, \bar{a}+b, \bar{a}+\bar{b}$</td>
<td>$a, b, b+\bar{b}, a+\bar{a}, \bar{b}, \bar{a}$</td>
</tr>
<tr>
<td></td>
<td>$a+b+c, a+\bar{b}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\bar{a}+b, \bar{a}+\bar{b}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rappel :

- $\Delta_{i+1} =$
 - Compute all the resolvents of Δ_i and $\Delta_i \cup \Theta_i$
 - Reduce this set
 - Remove the new resolvents which include a clause from $\Delta_i \cup \Theta_i$

- $\Theta_{i+1} =$
 - Remove from $\Delta_i \cup \Theta_i$ the clauses which include a clause of Δ_{i+1}.
Exemple 2.2.1

Soit $\Gamma = \{a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b}\}$

<table>
<thead>
<tr>
<th>i</th>
<th>Δ_i</th>
<th>Θ_i</th>
<th>$\Delta_i \cup \Theta_i$</th>
<th>Résolvants de Δ_i et $\Delta_i \cup \Theta_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$a + b + \bar{a}, a + b$</td>
<td>0</td>
<td>$a + b, a + \bar{b}$, $\bar{a} + b, \bar{a} + \bar{b}$</td>
<td>$a, b, b + \bar{b}$, $a + \bar{a}, \bar{b}, \bar{a}$</td>
</tr>
<tr>
<td></td>
<td>$a + b + c, a + \bar{b}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\bar{a} + b, \bar{a} + \bar{b}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>a, b, b, \bar{a}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rappel :

- $\Delta_{i+1} =$
 - Compute all the resolvents of Δ_i and $\Delta_i \cup \Theta_i$
 - Reduce this set
 - Remove the new resolvents which include a clause from $\Delta_i \cup \Theta_i$

- $\Theta_{i+1} =$
 Remove from $\Delta_i \cup \Theta_i$ the clauses which include a clause of Δ_{i+1}.
Exemple 2.2.1

Soit $\Gamma = \{ a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b} \}$

<table>
<thead>
<tr>
<th>i</th>
<th>Δ_i</th>
<th>Θ_i</th>
<th>$\Delta_i \cup \Theta_i$</th>
<th>Résolvants de Δ_i et $\Delta_i \cup \Theta_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b}$</td>
<td>0</td>
<td>$a + b, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b}$</td>
<td>$a, b, b + \bar{b}, a + \bar{a}, \bar{b}, \bar{a}$</td>
</tr>
<tr>
<td>1</td>
<td>a, b, b, \bar{a}</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rappel :

- $\Delta_{i+1} =$
 - Compute all the resolvents of Δ_i and $\Delta_i \cup \Theta_i$
 - Reduce this set
 - Remove the new resolvents which include a clause from $\Delta_i \cup \Theta_i$

- $\Theta_{i+1} =$
 Remove from $\Delta_i \cup \Theta_i$ the clauses which include a clause of Δ_{i+1}.
Exemple 2.2.1

Soit $\Gamma = \{a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b}\}$

<table>
<thead>
<tr>
<th>i</th>
<th>Δ_i</th>
<th>Θ_i</th>
<th>$\Delta_i \cup \Theta_i$</th>
<th>Résolvants de Δ_i et $\Delta_i \cup \Theta_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$a + b + \bar{a}, a + b$</td>
<td>0</td>
<td>$a + b, a + \bar{b}$, $\bar{a} + b, \bar{a} + \bar{b}$</td>
<td>$a, b, b + \bar{b}, a + \bar{a}, \bar{b}, \bar{a}$</td>
</tr>
<tr>
<td></td>
<td>$a + b + c, a + \bar{b}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\bar{a} + b, \bar{a} + \bar{b}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>a, b, \bar{b}, \bar{a}</td>
<td>0</td>
<td>a, b, \bar{b}, \bar{a}</td>
<td></td>
</tr>
</tbody>
</table>

Rappel :

- $\Delta_{i+1} =$
 - Compute all the resolvents of Δ_i and $\Delta_i \cup \Theta_i$
 - Reduce this set
 - Remove the new resolvents which include a clause from $\Delta_i \cup \Theta_i$

- $\Theta_{i+1} =$
 Remove from $\Delta_i \cup \Theta_i$ the clauses which include a clause of Δ_{i+1}.
Exemple 2.2.1

Soit $\Gamma = \{a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b}\}$

<table>
<thead>
<tr>
<th>i</th>
<th>Δ_i</th>
<th>Θ_i</th>
<th>$\Delta_i \cup \Theta_i$</th>
<th>Résolvants de Δ_i et $\Delta_i \cup \Theta_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$a + b + \bar{a}, a + b$, $a + b + c, \bar{a} + b, \bar{a} + \bar{b}$</td>
<td>0</td>
<td>$a + b, a + \bar{b}$, $\bar{a} + b, \bar{a} + \bar{b}$</td>
<td>$a, b, b + \bar{b}$, $a + \bar{a}, \bar{b}, \bar{a}$</td>
</tr>
<tr>
<td>1</td>
<td>a, b, \bar{b}, \bar{a}</td>
<td>0</td>
<td>a, b, \bar{b}, \bar{a}</td>
<td>⊥</td>
</tr>
</tbody>
</table>

Rappel :

- $\Delta_{i+1} =$
 - Compute all the resolvents of Δ_i and $\Delta_i \cup \Theta_i$
 - Reduce this set
 - Remove the new resolvents which include a clause from $\Delta_i \cup \Theta_i$

- $\Theta_{i+1} =$
 Remove from $\Delta_i \cup \Theta_i$ the clauses which include a clause of Δ_{i+1}.
Exemple 2.2.1

Soit $\Gamma = \{ a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b} \}$

<table>
<thead>
<tr>
<th>i</th>
<th>Δ_i</th>
<th>Θ_i</th>
<th>$\Delta_i \cup \Theta_i$</th>
<th>Résolvants de Δ_i et $\Delta_i \cup \Theta_i$</th>
</tr>
</thead>
</table>
| 0 | $a + b + \bar{a}, a + b$
 | | \emptyset
 | $a + b, a + \bar{b},$
 | $a, b, b + \bar{b},$ |
 | $a + b + c, a + \bar{b}$
 | | | $\bar{a} + b, \bar{a} + \bar{b}$ |
 | $\bar{a} + b, \bar{a} + \bar{b}$ | | $a + \bar{a}, \bar{b}, \bar{a}$ |
| 1 | a, b, \bar{b}, \bar{a} | \emptyset
 | a, b, \bar{b}, \bar{a} | \perp |
| 2 | | | | |

Rappel :

- $\Delta_{i+1} =$
 - Compute all the resolvents of Δ_i and $\Delta_i \cup \Theta_i$
 - Reduce this set
 - Remove the new resolvents which include a clause from $\Delta_i \cup \Theta_i$

- $\Theta_{i+1} =$
 Remove from $\Delta_i \cup \Theta_i$ the clauses which include a clause of Δ_{i+1}.
Exemple 2.2.1

Soit \(\Gamma = \{ a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b} \} \)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(\Delta_i)</th>
<th>(\Theta_i)</th>
<th>(\Delta_i \cup \Theta_i)</th>
<th>Résolvants de (\Delta_i) et (\Delta_i \cup \Theta_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(a + b + \bar{a}, a + b) (a + b + c, a + \bar{b}) (\bar{a} + b, \bar{a} + \bar{b})</td>
<td>0</td>
<td>(a + b, a + \bar{b}) (\bar{a} + b, \bar{a} + \bar{b})</td>
<td>(a, b, b + \bar{b}) (a + \bar{a}, \bar{b}, \bar{a})</td>
</tr>
<tr>
<td>1</td>
<td>(a, b, b, \bar{a})</td>
<td>0</td>
<td>(a, b, b, \bar{a})</td>
<td>(\bot)</td>
</tr>
<tr>
<td>2</td>
<td>(\bot)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rappel :

- \(\Delta_{i+1} = \)
 - Compute all the resolvents of \(\Delta_i \) and \(\Delta_i \cup \Theta_i \)
 - Reduce this set
 - Remove the new resolvents which include a clause from \(\Delta_i \cup \Theta_i \)
- \(\Theta_{i+1} = \)
 - Remove from \(\Delta_i \cup \Theta_i \) the clauses which include a clause of \(\Delta_{i+1} \).
Exemple 2.2.1

Soit $\Gamma = \{a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b}\}$

<table>
<thead>
<tr>
<th>i</th>
<th>Δ_i</th>
<th>Θ_i</th>
<th>$\Delta_i \cup \Theta_i$</th>
<th>Résolvants de Δ_i et $\Delta_i \cup \Theta_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$a + b + \bar{a}, a + b$</td>
<td>0</td>
<td>$a + b, a + \bar{b}$, $\bar{a} + b, \bar{a} + \bar{b}$</td>
<td>$a, b, b + \bar{b}$, $a + \bar{a}, \bar{b}, \bar{a}$</td>
</tr>
<tr>
<td></td>
<td>$a + b + c, a + \bar{b}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\bar{a} + b, \bar{a} + \bar{b}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>a, b, b, \bar{a}</td>
<td>0</td>
<td>a, b, \bar{b}, \bar{a}</td>
<td>\perp</td>
</tr>
<tr>
<td>2</td>
<td>\perp</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rappel :

$\Delta_{i+1} =$

$\Theta_{i+1} =$

Remove from $\Delta_i \cup \Theta_i$ the clauses which include a clause of Δ_{i+1}.
Exemple 2.2.1

Soit \(\Gamma = \{ a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b} \} \)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(\Delta_i)</th>
<th>(\Theta_i)</th>
<th>(\Delta_i \cup \Theta_i)</th>
<th>Résolvants de (\Delta_i) et (\Delta_i \cup \Theta_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(a + b + \bar{a}, a + b)</td>
<td>0</td>
<td>(a + b, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b})</td>
<td>(a, b, b + \bar{b}, a + \bar{a}, \bar{b}, \bar{a})</td>
</tr>
<tr>
<td></td>
<td>(a + b + c, a + \bar{b})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\bar{a} + b, \bar{a} + \bar{b})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(a, b, b, \bar{a})</td>
<td>0</td>
<td>(a, b, \bar{b}, \bar{a})</td>
<td>(\bot)</td>
</tr>
<tr>
<td>2</td>
<td>(\bot)</td>
<td>0</td>
<td>(\bot)</td>
<td></td>
</tr>
</tbody>
</table>

Rappel :

- \(\Delta_{i+1} = \)
 - Compute all the resolvents of \(\Delta_i \) and \(\Delta_i \cup \Theta_i \)
 - Reduce this set
 - Remove the new resolvents which include a clause from \(\Delta_i \cup \Theta_i \)
- \(\Theta_{i+1} = \)
 - Remove from \(\Delta_i \cup \Theta_i \) the clauses which include a clause of \(\Delta_{i+1} \).
Exemple 2.2.1

Soit $\Gamma = \{a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, a + b, \bar{a} + \bar{b}\}$

<table>
<thead>
<tr>
<th>i</th>
<th>Δ_i</th>
<th>Θ_i</th>
<th>$\Delta_i \cup \Theta_i$</th>
<th>Résolvants de Δ_i et $\Delta_i \cup \Theta_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$a + b + \bar{a}, a + b$</td>
<td>0</td>
<td>$a + b, a + \bar{b}$, $\bar{a} + b, \bar{a} + \bar{b}$</td>
<td>$a, b, b + \bar{b}, a + \bar{a}, \bar{b}, \bar{a}$</td>
</tr>
<tr>
<td></td>
<td>$a + b + c, a + \bar{b}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\bar{a} + b, \bar{a} + \bar{b}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>a, b, \bar{b}, \bar{a}</td>
<td>0</td>
<td>a, b, \bar{b}, \bar{a}</td>
<td>\bot</td>
</tr>
<tr>
<td>2</td>
<td>\bot</td>
<td>0</td>
<td>\bot</td>
<td>0</td>
</tr>
</tbody>
</table>
Exemple 2.2.1

Soit $\Gamma = \{a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b}\}$

<table>
<thead>
<tr>
<th>i</th>
<th>Δ_i</th>
<th>Θ_i</th>
<th>$\Delta_i \cup \Theta_i$</th>
<th>Résolvants de Δ_i et $\Delta_i \cup \Theta_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$a + b + \bar{a}, a + b$</td>
<td>0</td>
<td>$a + b, a + b, \bar{a} + b, \bar{a} + \bar{b}$</td>
<td>$a, b, b + b, a + \bar{a}, \bar{b}, \bar{a}$</td>
</tr>
<tr>
<td></td>
<td>$a + b + c, a + \bar{b}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\bar{a} + b, \bar{a} + \bar{b}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>a, b, \bar{b}, \bar{a}</td>
<td>0</td>
<td>a, b, \bar{b}, \bar{a}</td>
<td>\bot</td>
</tr>
<tr>
<td>2</td>
<td>\bot</td>
<td>0</td>
<td>\bot</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rappel :

$\Delta_{i+1} =$

$\Theta_{i+1} =$

Remove from $\Delta_i \cup \Theta_i$ the clauses which include a clause of Δ_{i+1}.

Compute all the resolvents of Δ_i and $\Delta_i \cup \Theta_i$

Reduce this set

Remove the new resolvents which include a clause from $\Delta_i \cup \Theta_i$
Exemple 2.2.1

Soit \(\Gamma = \{ a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b} \} \)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(\Delta_i)</th>
<th>(\Theta_i)</th>
<th>(\Delta_i \cup \Theta_i)</th>
<th>Résolvants de (\Delta_i) et (\Delta_i \cup \Theta_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(a + b + \bar{a}, a + b, a + b + c, a + \bar{b}, \bar{a} + b, \bar{a} + \bar{b})</td>
<td>0</td>
<td>(a + b, a + b, \bar{a} + \bar{b}, \bar{a} + b, a + \bar{a}, \bar{b}, \bar{a})</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(a, b, \bar{b}, \bar{a})</td>
<td>0</td>
<td>(a, b, \bar{b}, \bar{a})</td>
<td>(\bot)</td>
</tr>
<tr>
<td>2</td>
<td>(\bot)</td>
<td>0</td>
<td>(\bot)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>(\bot)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rappel :

- \(\Delta_{i+1} = \)
 - Compute all the resolvents of \(\Delta_i \) and \(\Delta_i \cup \Theta_i \)
 - Reduce this set
 - Remove the new resolvents which include a clause from \(\Delta_i \cup \Theta_i \)
- \(\Theta_{i+1} = \)
 - Remove from \(\Delta_i \cup \Theta_i \) the clauses which include a clause of \(\Delta_{i+1} \).
The proof we built

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a + b$</td>
</tr>
<tr>
<td>2</td>
<td>$a + \overline{b}$</td>
</tr>
<tr>
<td>3</td>
<td>$\overline{a} + b$</td>
</tr>
<tr>
<td>4</td>
<td>$\overline{a} + \overline{b}$</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
</tr>
<tr>
<td>7</td>
<td>\overline{b}</td>
</tr>
<tr>
<td>8</td>
<td>\overline{a}</td>
</tr>
<tr>
<td>9</td>
<td>\bot</td>
</tr>
</tbody>
</table>
The proof we built

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a + b$</td>
</tr>
<tr>
<td>2</td>
<td>$a + \overline{b}$</td>
</tr>
<tr>
<td>3</td>
<td>$\overline{a} + b$</td>
</tr>
<tr>
<td>4</td>
<td>$\overline{a} + \overline{b}$</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
</tr>
<tr>
<td>7</td>
<td>\overline{b}</td>
</tr>
<tr>
<td>8</td>
<td>\overline{a}</td>
</tr>
<tr>
<td>9</td>
<td>\bot</td>
</tr>
</tbody>
</table>
Example 2.2.2

\{ a, c, \overline{a} + \overline{b}, \overline{c} + e \}

Rappel :

- \[\Delta_{i+1} = \]
 - Compute all the resolvents of \(\Delta_i \) and \(\Delta_i \cup \Theta_i \)
 - Reduce this set
 - Remove the new resolvents which include a clause from \(\Delta_i \cup \Theta_i \)

- \[\Theta_{i+1} = \]
 Remove from \(\Delta_i \cup \Theta_i \) the clauses which include a clause of \(\Delta_{i+1} \).
Example 2.2.2

\[\{ a, c, \overline{a} + \overline{b}, \overline{c} + e \} \]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(\Delta_i)</th>
<th>(\Theta_i)</th>
<th>(\Delta_i \cup \Theta_i)</th>
<th>Rés. de (\Delta_i) et (\Delta_i \cup \Theta_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(a, c, \overline{a} + \overline{b}, \overline{c} + e)</td>
<td>(\emptyset)</td>
<td>(a, c, \overline{a} + \overline{b}, \overline{c} + e)</td>
<td>(b, e)</td>
</tr>
</tbody>
</table>

Rappel :

\[\begin{align*}
\Delta_{i+1} &= \\
&\quad \text{Compute all the resolvents of } \Delta_i \text{ and } \Delta_i \cup \Theta_i \\
&\quad \text{Reduce this set} \\
&\quad \text{Remove the new resolvents which include a clause from } \Delta_i \cup \Theta_i \\
\Theta_{i+1} &= \\
&\quad \text{Remove from } \Delta_i \cup \Theta_i \text{ the clauses which include a clause of } \Delta_{i+1}.
\end{align*}\]
Example 2.2.2

\{ a, c, \overline{a} + \overline{b}, \overline{c} + e \}

<table>
<thead>
<tr>
<th>i</th>
<th>Δ_i</th>
<th>Θ_i</th>
<th>$\Delta_i \cup \Theta_i$</th>
<th>Rés. de Δ_i et $\Delta_i \cup \Theta_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$a, c, \overline{a} + \overline{b}, \overline{c} + e$</td>
<td>\emptyset</td>
<td>$a, c, \overline{a} + \overline{b}, \overline{c} + e$</td>
<td>b, e</td>
</tr>
<tr>
<td>1</td>
<td>\overline{b}, e</td>
<td>a, c</td>
<td>\overline{b}, e, a, c</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>

Rappel :

- $\Delta_{i+1} =$
 - Compute all the resolvents of Δ_i and $\Delta_i \cup \Theta_i$
 - Reduce this set
 - Remove the new resolvents which include a clause from $\Delta_i \cup \Theta_i$

- $\Theta_{i+1} =$
 Remove from $\Delta_i \cup \Theta_i$ the clauses which include a clause of Δ_{i+1}.
Example 2.2.2

\(\{ a, c, \overline{a} + \overline{b}, \overline{c} + e \} \)

<table>
<thead>
<tr>
<th>(i)</th>
<th>(\Delta_i)</th>
<th>(\Theta_i)</th>
<th>(\Delta_i \cup \Theta_i)</th>
<th>Rés. de (\Delta_i) et (\Delta_i \cup \Theta_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(a, c, \overline{a} + \overline{b}, \overline{c} + e)</td>
<td>(\emptyset)</td>
<td>(a, c, \overline{a} + \overline{b}, \overline{c} + e)</td>
<td>(b, e)</td>
</tr>
<tr>
<td>1</td>
<td>(\overline{b}, e)</td>
<td>(a, c)</td>
<td>(\overline{b}, e, a, c)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>2</td>
<td>(\emptyset)</td>
<td>(b, e, a, c)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rappel :

- \(\Delta_{i+1} = \)
 - Compute all the resolvents of \(\Delta_i \) and \(\Delta_i \cup \Theta_i \)
 - Reduce this set
 - Remove the new resolvents which include a clause from \(\Delta_i \cup \Theta_i \)

- \(\Theta_{i+1} = \)
 - Remove from \(\Delta_i \cup \Theta_i \) the clauses which include a clause of \(\Delta_{i+1} \).
Termination of the algorithm: idea

There are at most 2^n clauses deduced from Γ.

$\Delta_i(i \geq 0)$ contains only clauses deduced from Γ
Termination of the algorithm: idea

There are at most 2^n clauses deduced from Γ.

$\Delta_i(i \geq 0)$ contains only clauses deduced from Γ

Property 2.2.4

For all $i \leq k$, the sets Δ_i are mutually disjoint.
(by construction of Δ_i)
Termination of the algorithm: idea

There are at most 2^n clauses deduced from Γ.

$\Delta_{i(i \geq 0)}$ contains only clauses deduced from Γ

Property 2.2.4

For all $i \leq k$, the sets Δ_i are mutually disjoint.
(by construction of Δ_i)

$\Delta_{i(i \geq 0)}$ are mutually disjoint

Hence there are at most $2^n + 1$ sets, therefore $k \leq 2^n + 1$
Result of the algorithm

When the algorithm terminates:

- if $\bot \in \Theta_k : \Gamma$ is unsatisfiable
- if $\bot \notin \Theta_k : \Gamma$ is satisfiable, but what does Θ_k represent?
Result of the algorithm

When the algorithm terminates:

- if $\bot \in \Theta_k$: Γ is unsatisfiable
- if $\bot \notin \Theta_k$: Γ is satisfiable, but what does Θ_k represent?

> $\Theta_k =$ set of minimum deduction clauses.

> Γ and Θ_k are equivalent.
Result of the algorithm

When the algorithm terminates:

if $\bot \in \Theta_k$: Γ is unsatisfiable

if $\bot \notin \Theta_k$: Γ is satisfiable, but what does Θ_k represent?

$\Theta_k = \text{set of minimum deduction clauses.}$

Γ and Θ_k are equivalent.

Property 2.2.5

For all $i < k$, the sets $\Delta_i \cup \Theta_i$ and $\Delta_{i+1} \cup \Theta_{i+1}$ are equivalent.

Hence:

$\Gamma \equiv \Delta_0 \cup \emptyset = \Delta_0 \cup \Theta_0 \equiv \ldots \equiv \Delta_k \cup \Theta_k = \emptyset \cup \Theta_k = \Theta_k$
Overview

Correctness of deduction

Completeness of deduction

Introduction to Resolution Algorithms

A Deductive Method: Complete Strategy

A SAT Method: the Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Conclusion
History

The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

- Introduced by Martin Davis and Hilary Putnam in 1960, then refined by Martin Davis, George Logemann and Donald Loveland in 1962
- Indicates if a set of clauses is satisfiable and exhibits a model.
- Basis for (most efficient) complete SAT-solvers such as chaff, zchaff and satz.
Principle I

Two types of formulae transformations:

1. preserving the truth value:
 - reduction
Principle I

Two types of formulae transformations:

1. **preserving the truth value:**
 - reduction

2. **preserving only satisfiability:**
 - pure literal elimination
 - unit resolution

DPLL is efficient because it uses these two kinds transformations.
Principle II

“Branching/Backtracking” (splitting rule)

- **Branching**: After simplification, assign to **true** a heuristically chosen variable (branching literal).
- **Continue the algorithm recursively.**
Principle II

“Branching/Backtracking” (splitting rule)

- **Branching**: After simplification, assign to **true** a heuristically chosen variable (branching literal).
- Continue the algorithm recursively.
- **Backtracking**: If we arrive to a contradiction, we return to the last choice, and we “branch” by assigning **false** to the chosen variable.
The DPLL Algorithm (figure 2.1)

```python
bool function Algo_DPLL( Γ: set of clauses)
0   Remove the valid clauses from Γ.
    If Γ = ∅, return (true).
    Else return (DPLL(Γ))

bool function DPLL( Γ: set of non-valid clauses)
The function returns true if and only if Γ is satisfiable.
1   If ⊥∈ Γ, return (false).
    If Γ = ∅, return (true).
2   Reduce Γ.
3   Remove from Γ the clauses containing a pure literal.
    If the set Γ has been modified, goto 1.
4   Apply unit resolution to Γ.
    If the set Γ has been modified, goto 1.
5   Pick an arbitrary variable x in Γ
    return (DPLL(Γ[x := 0]) or else DPLL(Γ[x := 1]))
```
The DPLL Algorithm (figure 2.1)

```
bool function Algo_DPLL( Γ: set of clauses)
0   Remove the valid clauses from Γ.
   If Γ = ∅, return (true).
   Else return (DPLL(Γ))

bool function DPLL( Γ: set of non-valid clauses)
The function returns true if and only if Γ is satisfiable.
1   If ⊥∈ Γ, return(false).
   If Γ = ∅, return (true).
2   Reduce Γ.
3   Remove from Γ the clauses containing a pure literal.
   If the set Γ has been modified, goto 1.
4   Apply unit resolution to Γ.
   If the set Γ has been modified, goto 1.
5   Pick an arbitrary variable x in Γ
   return (DPLL(Γ[x := 0]) or else DPLL(Γ[x := 1]))
```
The DPLL Algorithm (figure 2.1)

bool function \texttt{Algo_DPLL}(\Gamma : \text{set of clauses})

0 \hspace{1cm} \text{Remove the valid clauses from } \Gamma.
 \hspace{1cm} \text{If } \Gamma = \emptyset, \text{return (true).}
 \hspace{1cm} \text{Else return (DPLL(}\Gamma))

bool function \texttt{DPLL}(\Gamma : \text{set of non-valid clauses})

The function returns true if and only if \Gamma is satisfiable.

1 \hspace{1cm} \text{If } \bot \in \Gamma, \text{return (false).}
 \hspace{1cm} \text{If } \Gamma = \emptyset, \text{return (true).}

2 \hspace{1cm} \text{Reduce } \Gamma.

3 \hspace{1cm} \text{Remove from } \Gamma \text{ the clauses containing a pure literal.}
 \hspace{1cm} \text{If the set } \Gamma \text{ has been modified, goto 1.}

4 \hspace{1cm} \text{Apply unit resolution to } \Gamma.
 \hspace{1cm} \text{If the set } \Gamma \text{ has been modified, goto 1.}

5 \hspace{1cm} \text{Pick an arbitrary variable } x \text{ in } \Gamma
 \hspace{1cm} \text{return (DPLL(} \Gamma[x := 0]) \text{ or else DPLL(} \Gamma[x := 1]))
The DPLL Algorithm (figure 2.1)

bool function Algo_DPLL(Γ: set of clauses)

0. Remove the valid clauses from Γ.
 - If $\Gamma = \emptyset$, return (true).
 - Else return (DPLL(Γ))

bool function DPLL(Γ: set of non-valid clauses)

The function returns true if and only if Γ is satisfiable.

1. If $\bot \in \Gamma$, return (false).
 - If $\Gamma = \emptyset$, return (true).
2. Reduce Γ.
3. Remove from Γ the clauses containing a pure literal.
 - If the set Γ has been modified, goto 1.
4. Apply unit resolution to Γ.
 - If the set Γ has been modified, goto 1.
5. Pick an arbitrary variable x in Γ
 return (DPLL($\Gamma[x := 0]$) or else DPLL($\Gamma[x := 1]$))
Removal of clauses containing a pure literal

Definition 2.3.1

A literal L is **pure** if none of the clauses in Γ contains L^c.

Lemma 2.3.2

Removing clauses with a pure literal preserves satisfiability.

Proof: see exercise 49.

Intuition: assigning $[L]_v$ to 1 is always possible for a pure literal.
Example 2.3.3

Let \(\Gamma \) be the set of clauses

1. \(p + q + r \)
2. \(\bar{q} + \bar{r} \)
3. \(q + s \)
4. \(\bar{s} + t \)

Simplify \(\Gamma \) by removing clauses containing pure literals.
Example 2.3.3

Let Γ be the set of clauses

1. $p + q + r$
2. $\overline{q} + \overline{r}$
3. $q + s$
4. $\overline{s} + t$

Simplify Γ by removing clauses containing pure literals.

The literals p and t are pure.
Therefore we obtain

2. $\overline{q} + \overline{r}$
3. $q + s$
Example 2.3.3

Let Γ be the set of clauses

1. $p + q + r$
2. $\overline{q} + \overline{r}$
3. $q + s$
4. $\overline{s} + t$

Simplify Γ by removing clauses containing pure literals.

The literals p and t are pure. Therefore we obtain

2. $\overline{q} + \overline{r}$

(3) $q + s$

The literals \overline{r} and s are pure.
Example 2.3.3

Let Γ be the set of clauses

(1) $p + q + r$
(2) $\overline{q} + \overline{r}$
(3) $q + s$
(4) $\overline{s} + t$

Simplify Γ by removing clauses containing pure literals.

The literals p and t are pure.
Therefore we obtain

(2) $\overline{q} + \overline{r}$
(3) $q + s$

The literals \overline{r} and s are pure.
We obtain the empty set.
Example 2.3.3

Let \(\Gamma \) be the set of clauses

\[
\begin{align*}
(1) & \quad p + q + r \\
(2) & \quad \bar{q} + \bar{r} \\
(3) & \quad q + s \\
(4) & \quad \bar{s} + t
\end{align*}
\]

Simplify \(\Gamma \) by removing clauses containing pure literals.

The literals \(p \) and \(t \) are pure.
Therefore we obtain

\[
\begin{align*}
(2) & \quad \bar{q} + \bar{r} \\
(3) & \quad q + s
\end{align*}
\]

The literals \(\bar{r} \) and \(s \) are pure.
We obtain the empty set.
Therefore \(\Gamma \) has a model (for instance \(p = 1, t = 1, r = 0, s = 1 \)).
Unit resolution

Definition 2.3.4

A unit clause is a clause which contains only one literal.
Unit resolution

Definition 2.3.4
A unit clause is a clause which contains only one literal.

Lemma 2.3.5
Let L be the literal from a unit clause of Γ.
Let Θ be the set of clauses obtained by:

- removing the clauses containing L
- removing L^c inside the remaining clauses

 ▶ if Γ contains two complementary unit clauses, then $\Theta = \{\bot\}$.

We apply this process for every unit clause.
Γ has a model if and only if Θ has a model.

Proof: The proof is requested in exercise 50.
Example 2.3.6 Unit resolution

Simplify the following sets of clauses by unit resolution:

1. \(\Gamma = p + q, \bar{p}, \bar{q} \)
Example 2.3.6 Unit resolution

Simplify the following sets of clauses by unit resolution:

1. \(\Gamma = p + q, \overline{p}, \overline{q} \)

 - \(q, \overline{q} \) by unit resolution on \(\overline{p} \), then \(\bot \) by UR on \(\overline{q} \)

 Hence \(\Gamma \) has no model.

2. \(\Gamma = a + b + \overline{d}, \overline{a} + c + \overline{d}, \overline{b}, d, \overline{c} \)

 - \(a, a \)
 - \(\bot \) hence \(\Gamma \) has no model.

3. \(\Gamma = p, q, p + r, \overline{p} + r, q + \overline{r}, \overline{q} + s \)

 By unit resolution, we obtain:
 - \(r, s \)

 This set of clauses has a model, hence \(\Gamma \) has a model.
Example 2.3.6 Unit resolution

Simplify the following sets of clauses by unit resolution:

1. \(\Gamma = p + q, \overline{p}, \overline{q} \)
 - \(q, \overline{q} \) by unit resolution on \(\overline{p} \), then \(\bot \) by UR on \(\overline{q} \)
 - Hence \(\Gamma \) has no model.

2. \(\Gamma = a + b + \overline{d}, \overline{a} + c + \overline{d}, \overline{b}, d, \overline{c} \)
 - By unit resolution, we obtain: \(r, s \)
 - This set of clauses has a model, hence \(\Gamma \) has a model.
Example 2.3.6 Unit resolution

Simplify the following sets of clauses by unit resolution:

1. $\Gamma = p + q, \overline{p}, \overline{q}$

 - q, \overline{q} by unit resolution on \overline{p}, then \bot by UR on \overline{q}
 - Hence Γ has no model.

2. $\Gamma = a + b + \overline{d}, \overline{a} + c + \overline{d}, \overline{b}, d, \overline{c}$

 1. a, \overline{a}.
Example 2.3.6 Unit resolution

Simplify the following sets of clauses by unit resolution:

1. $\Gamma = p + q, \overline{p}, \overline{q}$
 - q, \overline{q} by unit resolution on \overline{p}, then \bot by UR on \overline{q}
 - Hence Γ has no model.

2. $\Gamma = a + b + \overline{d}, \overline{a} + c + \overline{d}, \overline{b}, d, \overline{c}$
 - 1. a, \overline{a}.
 - 2. \bot
 - Hence Γ has no model.

3. $\Gamma = p, q, p + r, \overline{p} + r, q + \overline{r}, \overline{q} + s$
Example 2.3.6 Unit resolution

Simplify the following sets of clauses by unit resolution:

1. $\Gamma = p + q, \bar{p}, \bar{q}$
 - q, \bar{q} by unit resolution on \bar{p}, then \bot by UR on \bar{q}
 - Hence Γ has no model.

2. $\Gamma = a + b + \bar{d}, \bar{a} + c + \bar{d}, \bar{b}, d, \bar{c}$
 - 1. a, \bar{a}.
 - 2. \bot
 - Hence Γ has no model.

3. $\Gamma = p, q, p + r, \bar{p} + r, q + \bar{r}, \bar{q} + s$
 - By unit resolution, we obtain: r, s.
Example 2.3.6 Unit resolution

Simplify the following sets of clauses by unit resolution:

1. \(\Gamma = p + q, \overline{p}, \overline{q} \)
 - \(q, \overline{q} \) by unit resolution on \(\overline{p} \), then \(\bot \) by UR on \(\overline{q} \)
 - Hence \(\Gamma \) has no model.

2. \(\Gamma = a + b + \overline{d}, \overline{a} + c + \overline{d}, \overline{b}, d, \overline{c} \)
 - 1. \(a, \overline{a} \).
 - 2. \(\bot \)
 - hence \(\Gamma \) has no model.

3. \(\Gamma = p, q, p + r, \overline{p} + r, q + \overline{r}, \overline{q} + s \)
 - By unit resolution, we obtain: \(r, s \).
 - This set of clauses has a model, hence \(\Gamma \) has a model.
Removal of valid clauses

Lemma 2.3.7

Let Θ be the set of clauses obtained by removing the valid clauses of Γ.

Γ has a model iff Θ has a model.

Proof.

\Rightarrow Every model of Γ is clearly a model of Θ, since $\Theta \subseteq \Gamma$.
Removal of valid clauses

Lemma 2.3.7

Let Θ be the set of clauses obtained by removing the valid clauses of Γ.

\[\Gamma \text{ has a model iff } \Theta \text{ has a model.} \]

Proof.

\Rightarrow Every model of Γ is clearly a model of Θ, since $\Theta \subseteq \Gamma$.

\Leftarrow Suppose that Θ has a model ν.

Let ν' be the truth assignment built from ν by assigning any value to the variables appearing in Γ but not in Θ.

Every clause C in Γ is:

- either a clause of Θ, then $[C]_{\nu'} = [C]_{\nu} = 1$
- or a valid clause, so obviously ν' is a model of C.

Hence ν' is a model of Γ.
The DPLL Algorithm (figure 2.1)

bool function Algo_DPLL(\(\Gamma \): set of clauses)
0 Remove the valid clauses from \(\Gamma \).
 If \(\Gamma = \emptyset \), return (true).
 Else return (DPLL(\(\Gamma \)))

bool function DPLL(\(\Gamma \): set of non-valid clauses)
The function returns true if and only if \(\Gamma \) is satisfiable.
1 If \(\bot \in \Gamma \), return(false).
 If \(\Gamma = \emptyset \), return (true).
2 Reduce \(\Gamma \).
3 Remove from \(\Gamma \) the clauses containing a pure literal.
 If the set \(\Gamma \) has been modified, goto 1.
4 Apply unit resolution to \(\Gamma \).
 If the set \(\Gamma \) has been modified, goto 1.
5 Pick an arbitrary variable \(x \) in \(\Gamma \)
return (DPLL(\(\Gamma \mid x := 0 \)) or else DPLL(\(\Gamma \mid x := 1 \)))
Example 2.3.8

Let Γ be the set of clauses: $\overline{a} + \overline{b}$, $a + b$, $\overline{a} + \overline{c}$, $a + c$, $\overline{b} + \overline{c}$, $b + c$. Since every leaf contains the empty clause, the set Γ is unsatisfiable.
Example 2.3.8

Let Γ be the set of clauses: $\overline{a} + \overline{b}$, $a + b$, $\overline{a} + \overline{c}$, $a + c$, $\overline{b} + \overline{c}$, $b + c$.

\[
\begin{align*}
\overline{a} + \overline{b}, & \quad a + b, \quad \overline{a} + \overline{c}, \quad a + c, \quad \overline{b} + \overline{c}, \quad b + c
\end{align*}
\]
Example 2.3.8

Let Γ be the set of clauses: $\overline{a} + \overline{b}$, $a + b$, $\overline{a} + \overline{c}$, $a + c$, $\overline{b} + \overline{c}$, $b + c$.

Since every leaf contains the empty clause, the set Γ is unsatisfiable.
Example 2.3.8

Let Γ be the set of clauses: $\overline{a} + b$, $a + b$, $\overline{a} + \overline{c}$, $a + c$, $\overline{b} + \overline{c}$, $b + c$.
Example 2.3.8

Let Γ be the set of clauses: $\overline{a} + \overline{b}, a + b, \overline{a} + \overline{c}, a + c, \overline{b} + \overline{c}, b + c$.
Example 2.3.8

Let Γ be the set of clauses: $\overline{a} + b$, $a + b$, $\overline{a} + \overline{c}$, $a + c$, $\overline{b} + \overline{c}$, $b + c$.

\begin{itemize}
 \item $a = 0$ \Rightarrow $\overline{a} + b, a + b, \overline{a} + \overline{c}, a + c, \overline{b} + \overline{c}, b + c$
 \item $a = 1$ \Rightarrow $\overline{b}, \overline{c}, \overline{b} + \overline{c}, b + c$
\end{itemize}

Since every leave contains the empty clause, the set Γ is unsatisfiable.
Example 2.3.8

Let Γ be the set of clauses: $\bar{a} + \bar{b}$, $a + b$, $\bar{a} + \bar{c}$, $a + c$, $\bar{b} + \bar{c}$, $b + c$.

Since every leaf contains the empty clause, the set Γ is unsatisfiable.
Example 2.3.8

Let Γ be the set of clauses: $\overline{a} + \overline{b}$, $a + b$, $\overline{a} + \overline{c}$, $a + c$, $\overline{b} + \overline{c}$, $b + c$.

Since every leaf contains the empty clause, the set Γ is unsatisfiable.
Example 2.3.8

Let \(\Gamma \) be the set of clauses: \(\overline{a} + \overline{b}, a + b, \overline{a} + \overline{c}, a + c, \overline{b} + \overline{c}, b + c \).

Since every leave contains the empty clause, the set \(\Gamma \) is unsatisfiable.
Example 2.3.8

Let Γ be the set of clauses: $\overline{p} + q$, $\overline{p} + s$, $p + q$, $\overline{p} + \overline{s}$.
Example 2.3.8

Let \(\Gamma \) be the set of clauses: \(\overline{p} + q, \overline{p} + s, p + q, \overline{p} + \overline{s} \).

Since one branch leads to the empty set, the set \(\Gamma \) is satisfiable. It is **useless** to continue the construction of the right branch.
Theorems 2.3.9 et 2.3.10

The algorithm Algo_DPLL is correct and terminates.
The algorithm Algo_DPLL is correct and terminates.

Termination proof

- Valid clause removal is only executed once
- Simplification iteration: the number of clauses strictly decreases
- Recursive calls: the number of variables strictly decreases

Hence the termination.
Correctness proof

- Invariant for the simplification loop:
 the current value of Γ has a model iff Γ has a model.
Invariant for the simplification loop:

the current value of Γ has a model iff Γ has a model.

see lemma for each simplification.
Correctness proof

- Invariant for the simplification loop:
 the current value of \(\Gamma \) has a model iff \(\Gamma \) has a model.
 see lemma for each simplification.

- Correctness of recursive calls:
 Reminder of property 2.1.21:
 \(\Gamma \) has a model iff \(\Gamma[x := 0] \) or \(\Gamma[x := 1] \) is satisfiable.
 So if the recursive calls are correct, the current call is too.
Correctness proof

- Invariant for the simplification loop:
 the current value of Γ has a model iff Γ has a model.
 see lemma for each simplification.

- Correctness of recursive calls:

 Reminder of property 2.1.21:
 Γ has a model iff $\Gamma[x := 0]$ or $\Gamma[x := 1]$ is satisfiable.
 So if the recursive calls are correct, the current call is too.

 Since the algorithm is correct for a set Γ with no literal, it is correct for any set Γ of clauses.
Remarks 2.3.11 and 2.3.12

▶ **Forgetting simplifications:** DPLL is still correct if we forget (once or more) reduction (2), pure literal elimination (3) and/or unit reduction (4).
Remarks 2.3.11 and 2.3.12

- **Forgetting simplifications:** DPLL is still correct if we forget (once or more) reduction (2), pure literal elimination (3) and/or unit reduction (4).

- **Choice of the variable (branching literal):**
 - A good choice for variable x in step (5) is the variable that appears most often.
 - A better choice is the variable which will lead to the maximum number of simplifications

Cf. Sub-section 2.3.5, for the main branching heuristics
Overview

Correctness of deduction

Completeness of deduction

Introduction to Resolution Algorithms

A Deductive Method: Complete Strategy

A SAT Method: the Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Conclusion
Today

- Resolution is a **correct and complete** deductive system: it **characterizes** all the unsatisfiable formulae.
- **Complete Strategy** is an **algorithm** for computing **every** clause deducible from an initial set.
- The **DPLL algorithm** uses ideas from resolution to:
 - find a **model**
 - or else, prove the **unsatisfiability** by an efficient search of the assignments.
Next lecture

- Natural deduction

Homework: **Hypotheses**:

- (H1) : \(p \Rightarrow \neg j \equiv \neg p \lor \neg j \)
- (H2) : \(\neg p \Rightarrow j \equiv p \lor j \)
- (H3) : \(j \Rightarrow m \equiv \neg j \lor m \)
- (¬ C): \(\neg m \land \neg p \) (two clauses)

Build the proof of \(H1, H2, H3, \neg C \vdash \bot \) obtained by the DPLL algorithm (you may pick any variable for branching)