A few examples

Formalize in first-order logic:

- Some people love each other.
 \[\exists x \exists y (\ell(x, y) \land \ell(y, x)) \]

- If two people are in love, then they are spouses.
 \[\forall x \forall y (\ell(x, y) \land \ell(y, x) \Rightarrow s(x) = y \land s(y) = x) \]

- No one can love two distinct persons.
 \[\forall x \forall y (\ell(x, y) \Rightarrow \forall z (\ell(x, z) \Rightarrow y = z)) \]
 \[\forall x \forall y \forall z (\ell(x, y) \land \ell(x, z) \Rightarrow y = z) \]
Overview

Interpretation (contd.): meaning of formulae

Interpretation and substitution

Finite interpretation

Important equivalences

Conclusion
Overview

Interpretation (contd.): meaning of formulae

Interpretation and substitution

Finite interpretation

Important equivalences

Conclusion
Reminders

- D is a non-empty domain.
- I is an interpretation of every symbol in a formula as:
 - constants ($\in D$)
 - functions ($D^n \rightarrow D$)
 - propositional variables ($\in \{0, 1\}$)
 - relations ($\subseteq D^n$)
Example 4.3.29

Let us consider the following signature:

- \(\text{Anne}^f_0\), \(\text{Bernard}^f_0\) and \(\text{Claude}^f_0\): constants
- \(\ell^{r_2}\): a binary relation (we read \(\ell(x, y)\) as “\(x\) loves \(y\)”)
- \(s^{f_1}\): a unary function (we read \(s(x)\) as the spouse of \(x\)).

Let \(I\) be the interpretation of domain \(D = \{0, 1, 2\}\) where:

- \(\text{Anne}_I^f = 0\), \(\text{Bernard}_I^f = 1\), and \(\text{Claude}_I^f = 2\).
- \(\ell_I^{r_2} = \{(0, 1), (1, 0), (2, 0)\}\).
- \(s_I^{f_1}(0) = 1\), \(s_I^{f_1}(1) = 0\), \(s_I^{f_1}(2) = 2\).
Truth value of a formula 4.3.30

1. Propositional connectives have the same meaning as in propositional logic.

2. Let $e[x = d]$ be the state that is identical to e, except for x.

$$\left[\forall x B \right]_{l,e} = \min_{d \in D} [B]_{l,e[x=d]} = \prod_{d \in D} [B]_{l,e[x=d]};$$

i.e. it is true if and only if $[B]_{(l,f)} = 1$ for every state f identical to e, except for x.

3.

$$\left[\exists x B \right]_{l,e} = \max_{d \in D} [B]_{l,e[x=d]} = \sum_{d \in D} [B]_{l,e[x=d]};$$

i.e. it is true if there is a state f identical to e, except for x, such that $[B]_{(l,f)} = 1$.
Example 4.3.32

Let us use the interpretation I given in example 4.3.19.
(Reminder $D = \{0, 1, 2\}$)

\[\exists x \, \ell(x, x) \] _I =
\[= \max\{[\ell(0, 0)]_I, [\ell(1, 1)]_I, [\ell(2, 2)]_I\} = \text{false}\]
\[= [\ell(0, 0)]_I + [\ell(1, 1)]_I + [\ell(2, 2)]_I = \text{false} + \text{false} + \text{false} = \text{false}.\]

\[\forall x \, \exists y \, \ell(x, y) \] _I =
\[= \min\\{\max\{\max\{[\ell(0, 0)]_I, [\ell(0, 1)]_I, [\ell(0, 2)]_I\},
\max\{[\ell(1, 0)]_I, [\ell(1, 1)]_I, [\ell(1, 2)]_I\},
\max\{[\ell(2, 0)]_I, [\ell(2, 1)]_I, [\ell(2, 2)]_I\}\}\]
\[= \min\{\max\{\text{false, true, false}\}, \max\{\text{true, false, false}\},
\max\{\text{true, false, false}\}\}\]
\[= \min\{\text{true, true, true}\} = \text{true}.\]
Example 4.3.32

\[\exists y \forall x \, \ell(x, y) \]

\[= [\ell(0, 0)]_I \cdot [\ell(1, 0)]_I \cdot [\ell(2, 0)]_I + [\ell(0, 1)]_I \cdot [\ell(1, 1)]_I \cdot [\ell(2, 1)]_I \]

\[+ [\ell(0, 2)]_I \cdot [\ell(1, 2)]_I \cdot [\ell(2, 2)]_I \]

\[= \text{false}.\text{true}.\text{true} + \text{true}.\text{false}.\text{false} + \text{false}.\text{false}.\text{false} \]

\[= \text{false} + \text{false} + \text{false} = \text{false}. \]

Remark 4.3.33

The formulae \(\forall x \exists y \, \ell(x, y) \) and \(\exists y \forall x \, \ell(x, y) \) do not have the same value. Exchanging a \(\exists \) and a \(\forall \) does not preserve the truth value of a formula.
Model, validity, consequence, equivalence

Defined as in propositional logic but...

What’s needed to evaluate a formula

- **In propositional logic**: an assignment \(V \rightarrow \{0, 1\} \)
- **In first-order logic**: \((I, e)\) where
 - \(I\) is a symbol interpretation
 - \(e\) a variable state.

... we use an interpretation instead of an assignment. The truth value of a formula only depends on
- the state of its free variables
- and the interpretation of its symbols.
Overview

Interpretation (contd.): meaning of formulae

Interpretation and substitution

Finite interpretation

Important equivalences

Conclusion
Substitution at the propositional level

Recall that substituting a propositional variable in a valid formula yields another valid formula. This extends to first-order logic.

Example:

Let $\sigma(p) = \forall x \ q(x)$.

$p \lor \neg p$ is valid, the same holds for

$$\sigma(p \lor \neg p) = \forall x \ q(x) \lor \neg \forall x \ q(x)$$

The replacement principle extends to first-order logic as well since:

For any formulae A and B and any variable x:

- $(A \iff B) \models (\forall x A \iff \forall x B)$
- $(A \iff B) \models (\exists x A \iff \exists x B)$
Instantiation of a variable in a term

Definition 4.3.34

\(A < x := t > \) is the formula obtained by replacing in \(A \) every free occurrence of \(x \) with the term \(t \).

Example 4.3.35

Let \(A \) be the formula \((\forall x P(x) \lor Q(x)) \), the formula \(A < x := b > \) is \((\forall x P(x) \lor Q(b)) \) since only the bold occurrence of \(x \) is free.

But one cannot substitute any variable with anything:

Example 4.3.37

Let \(A \) be the formula \(\exists y p(x, y) \).

\[A < x := y > = \exists y p(y, y) \] (capture phenomenon)
Capture changes the meaning of a formula

Example 4.3.37

Let p be a binary relation interpreted over $\{0, 1\}$ as $p_I = \{(0, 1)\}$

Let e be a state where $y = 0$.

- $[A < x := y >]_{(I, e)} =$

 $[\exists y p(y, y)]_{(I, e)} = [p(0, 0)]_{(I, e)} + [p(1, 1)]_{(I, e)} = false + false = false$.

- Let $d = 0$.

 In the assignment $(I, e[x = d])$, we have $x = 0$.
 Hence $[A]_{(I, e[x=d])} =$

 $[\exists y p(x, y)]_{(I, e[x=d])} = [p(0, 0)]_{(I, e)} + [p(0, 1)]_{(I, e)} = false + true = true$.

Thus, $[A < x := y >]_{(I, e)} \neq [A]_{(I, e[x=d])}$, for $d = [y]_{(I, e)}$.
Precautions for the instantiation of a variable in a term

Solution: notion of a term \(t \) free for a variable

Definition 4.3.34

2. The term \(t \) is free for \(x \) in \(A \) if the variables of \(t \) are not bound in the free occurrences of \(x \).

Example 4.3.35

- The term \(f(z) \) is free for \(x \) in formula \(\exists y \, p(x, y) \).
- On the opposite, the term \(y \) is not free for \(x \) in this formula.
- By definition, the term \(x \) is free for \(x \) in any formula.
Properties

Theorem 4.3.36
Let \(A \) be a formula and \(t \) a free term for the variable \(x \) in \(A \).
For any assignment \((I, e)\) we have
\[
[A < x := t >]_{(I, e)} = [A]_{(I, e[\{x=d\})}
\]
where \(d = [t]_{(I, e)} \).

Corollary 4.3.38
Let \(A \) be a formula and \(t \) a free term for \(x \) in \(A \).
The formulae \(\forall x A \Rightarrow A < x := t > \) and \(A < x := t > \Rightarrow \exists x A \) are valid.
Overview

Interpretation (contd.): meaning of formulae

Interpretation and substitution

Finite interpretation

Important equivalences

Conclusion
Finite model

Definition

A finite model of a closed formula is an interpretation of the formula of finite domain, which makes the formula true.

Remark

- The name of the elements of the domain is not important.
- Hence for a model with n elements, we’ll use the domain of integers less than n.
Building a finite model

Naive idea: In order to know whether a closed formula has a model of domain \(\{0, \ldots, n - 1\} \), just

- **enumerate** all the possible interpretations of the associated signature of the formula
- **evaluate** the formula for these interpretations.

Example

Let \(\Sigma = \{a^0, f^1, P^{r2}\} \), plus possibly the equality.

Over a domain of 5 elements, \(\Sigma \) has \(5 \times 5^5 \times 2^{25} \) interpretations!

This method is **unreadable** in practice.
Software for building a finite model

MACE

- translation of first-order formulae in propositional formulae
- performant algorithms to find the satisfiability of a propositional formula (e.g., different versions of the DPLL algorithm)

http://www.cs.unm.edu/~mccune/mace4

An actual example:
Method for finding a finite model

We look for models with n elements by reduction to the propositional case.

Base case: a formula with no function symbol and no constant, except representations of integers less than n.

Building the n-elements model

1. eliminate the quantifiers by expansion over a domain of n elements,
2. replace equalities with their value
3. search for a propositional assignment of atomic formulae which is a model of the formula.
Expansion of a formula

Definition 4.3.39

The n-expansion of A consists in replacing:

- all sub-formula of A of the form $\forall x B$ with the conjunction
 $$\bigwedge_{i < n} B < x := i >$$
- all sub-formula of A of the form $\exists x B$ with the disjunction
 $$\bigvee_{i < n} B < x := i >$$

where i is a term interpreted as the integer i.

Example 4.3.40

The 2-expansion of the formula $\exists x P(x) \Rightarrow \forall x P(x)$ is

$$P(0) + P(1) \Rightarrow P(0).P(1)$$
Property of the n-expansion

Theorem 4.3.41

Let A be a formula containing only integers $< n$.
Let B be the n-expansion of A.
Any interpretation over the domain $\{0, \ldots, n-1\}$ assigns the same value to A and B.

Proof: by induction on the height of formulae.
From the assignment to the interpretation

Let A be a formula:
- closed,
- with no quantifier,
- with no equality nor function symbol,
- with no constant except the representations of integers less than n.

Let P be the set of atomic formulae in A (except \top and \bot).

Theorem 4.3.42

For any propositional assignment $\nu : P \to \{false, true\}$ there exists an interpretation I of A such that $[A]_I = [A]_{\nu}$.
Example 4.3.43

Let \(\nu \) be the assignment defined by \([p(0)]_\nu = true\) and \([p(1)]_\nu = false\).

\(\nu \) gives the value \(false \) to the formula \((p(0) + p(1)) \Rightarrow (p(0) \cdot p(1))\).

The interpretation \(I \) defined by \(p_I = \{0\} \) gives the same value to the same formulae.

This example shows that \(\nu \) and \(I \) are two analogous ways of presenting an interpretation.
From the interpretation to the assignment

Let A be a closed formula, with no quantifier, no equality, no function symbol, no constant except for the representations of integers $< n$. Let P be the set of atomic formulae in A.

Theorem 4.3.44

For any interpretation I there exists an assignment $\nu : P \rightarrow \{false, true\}$ such that

$$[A]_I = [A]_\nu.$$
Finding a finite model of a closed formula without function symbol

Procedure under the same hypotheses.

1. Replace A by its n-expansion B
2. In B,
 - replace equalities by their truth value
 \((i = j \text{ is true iff } i \text{ and } j \text{ are identical})\)
 - Apply the usual simplifications

Let C be the obtained formula.
3. Look for a propositional assignment ν of the atomic formulae of C, which is a model of C.
Correctness of the method

\[
\begin{align*}
A & \rightarrow B & \rightarrow C & \rightarrow C \\
(1\text{st order}) & \equiv_n (\text{without } \forall \exists) & \equiv (\text{without const.}) & \simeq (\text{propos.})
\end{align*}
\]

- \([A]_I = [B]_I \) for any \(I \) over a domain of \(n \) elements
- \(B \equiv C \) by construction (hence \([B]_I = [C]_I \) for any \(I \))
 - For any \(v \) there is an \(I \) such that \([C]_I = [C]_v \).
 - For any \(I \) there is a \(v \) such that \([C]_I = [C]_v \).

Thus \(A \) has a model \(I \) over a domain of \(n \) elements if and only if \(C \) has a model \(v \) (and we can find \(I \) from \(v \) if need be).
Example 4.3.45

\[A = \exists x P(x) \land \exists x \neg P(x) \land \forall x \forall y (P(x) \land P(y) \Rightarrow x = y) \]

A has no model of one element, since we have \(\exists x P(x) \) and \(\exists x \neg P(x) \).

2-expansion of A

\[
(P(0) + P(1)). (\overline{P(0)} + \overline{P(1)}). (P(0).P(0) \Rightarrow 0 = 0).(P(0).P(1) \Rightarrow 0 = 1).
(P(1).P(0) \Rightarrow 1 = 0).(P(1).P(1) \Rightarrow 1 = 1)
\]

We replace equalities by their values

\[
(P(0) + P(1)). (\overline{P(0)} + \overline{P(1)}).
(P(0).P(0) \Rightarrow \top). (P(0).P(1) \Rightarrow \bot). (P(1).P(0) \Rightarrow \bot). (P(1).P(1) \Rightarrow \top).
\]

Which simplifies to \((P(0) + P(1)).(\overline{P(0)} + \overline{P(1)})\)

The assignment \(P(0) \mapsto true, \ P(1) \mapsto false \) is a propositional model of that, hence the interpretation \(I \) of domain \(\{0, 1\} \) where \(P_I = \{0\} \) is a model of \(A \).
Finding a finite model of a closed formula with a function symbol

Let A be a closed formula which can contain representations of integers of value less than n.

Procedure:
- Replace A by its expansion
- Enumerate the choices of symbol values, by propagating as much as possible each of the realized choices.

Similar to DPLL algorithm.
Example 4.3.46 : \(A = \exists y P(y) \Rightarrow P(a) \)

Look for a counter-model with 2 elements.

2-expansion of \(A \)

\[
P(0) + P(1) \Rightarrow P(a)
\]

Find the values of \(P(0), P(1), a \).
We (arbitrarily) choose \(a = 0 \).

\[
P(0) + P(1) \Rightarrow P(0)
\]

\(P(0) \leftrightarrow false, P(1) \leftrightarrow true \) is a propositional counter-model, we deduce an interpretation \(I \) such that \(P_I = \{1\} \).

A counter-model is \(I \) over domain \(\{0, 1\} \) such that \(P_I = \{1\} \) and \(a_I = 0 \).
Example 4.3.47 : $P(a), \forall x(P(x) \Rightarrow P(f(x))), \neg P(f(b))$

1. 2-expansion:

 $$F = \{ P(a), (P(0) \Rightarrow P(f(0))), (P(1) \Rightarrow P(f(1))), \neg P(f(b)) \}.$$

2. Find values for $P(0), P(1), a, b, f(0)$ and $f(1)$ which provide a model of F.

3. Let us choose $a = 0$

 ▶ From $P(a) = true$ and $a = 0$, we deduce: $P(0) = true$

 ▶ From $P(0) = true$ and $(P(0) \Rightarrow P(f(0))) = true$, we deduce: $P(f(0)) = true$

 ▶ From $P(f(b)) = false$ and $P(f(0)) = true$, we deduce $f(0) \neq f(b)$ therefore $b \neq 0$, hence: $b = 1$ and $P(f(1)) = false$.

 ▶ From $P(f(1)) = false$ and $P(0) = true$, we deduce $f(1) \neq 0$ hence: $f(1) = 1$ and $P(1) = false$

 ▶ From $P(f(0)) = true$ and $P(1) = false$, we deduce: $f(0) = 0$

4. Model: $a = 0, b = 1, P = \{0\}, f(0) = 0, f(1) = 1$
Overview

Interpretation (contd.): meaning of formulae

Interpretation and substitution

Finite interpretation

Important equivalences

Conclusion
Relation between \forall and \exists

Lemma 4.4.1

Let A be a formula and x be a variable.

1. $\neg \forall x A \equiv \exists x \neg A$
2. $\forall x A \equiv \neg \exists x \neg A$
3. $\neg \exists x A \equiv \forall x \neg A$
4. $\exists x A \equiv \neg \forall x \neg A$

Let us prove the first two equivalences, the other are in exercise 78
Proof of $\neg \forall xA \equiv \exists x \neg A$

Let us evaluate $[\neg \forall xA](l,e)$

- $= 1 - [\forall xA](l,e)$
- $= 1 - \min_{d \in D} [A](l,e[x=d])$
- $= \max_{d \in D} (1 - [A](l,e[x=d]))$
- $= \max_{d \in D} [\neg A](l,e[x=d])$
- $= [\exists x \neg A](l,e)$

Proof of $\forall xA \equiv \neg \exists x \neg A$:

Let us evaluate $\forall xA$

- $\equiv \neg \neg \forall xA$
- $\equiv \neg \exists x \neg A$ (see above)
Moving quantifiers

Let x, y be two variables and A, B be two formulae.

1. $\forall x \forall y A \equiv \forall y \forall x A$
2. $\exists x \exists y A \equiv \exists y \exists x A$
3. $\forall x (A \land B) \equiv (\forall x A \land \forall x B)$
4. $\exists x (A \lor B) \equiv (\exists x A \lor \exists x B)$

5. Let Q be a quantifier and let \circ be a connective among \land, \lor.
 If x is not a free variable of A then:
 5.1 $Qx A \equiv A$,
 5.2 $Qx(A \circ B) \equiv A \circ QxB$
Example 4.4.2

Let us eliminate useless quantifiers from these two formulae:

1. \(\forall x \exists x P(x) \equiv \exists x P(x) \)
2. \(\forall x (\exists x P(x) \lor Q(x)) \equiv \exists x P(x) \lor \forall x Q(x) \)
Renaming of bound variables (1/3)

Theorem 4.4.3

Let Q be a quantifier. If y does not occur in $Qx\ A$ then:

$$Qx\ A \equiv Qy\ A < x := y >.$$

Example 4.4.4

$\forall x\ p(x, z) \equiv \forall y\ p(y, z)$

$\forall x\ p(x, z) \not\equiv \forall z\ p(z, z)$
Overview

Interpretation (contd.): meaning of formulae

Interpretation and substitution

Finite interpretation

Important equivalences

Conclusion
Today

- To evaluate a formula = to choose an interpretation for its **symbols** and a state for its **variables**
- Method for finding **(counter-)model** by finite interpretation and expansion
- Important equivalences about quantifiers
 (beware, **no usable notion of normal form**)
Next time

- Skolemisation
- Semi-algorithm to prove that a formula is unsatisfiable.

Homework

Every man is mortal.
Socrates is a man.
Hence Socrates is mortal.

- Look for a counter-model using 1-expansion then 2-expansion.
- What is your conclusion?